#!/usr/bin/env python3
"""Atmosphere density models and functions to transform between column density
(X in grammage units) and height (meters) units.
Zenith angle is taken into account in the line-of-sight integral to compute the
column density X assuming Earth as a flat plane (the curvature is not taken into
account)
"""
import abc
import warnings
from dataclasses import dataclass
from functools import partial
import numpy as np
from astropy import units as u
from astropy.table import QTable, Table
from scipy.interpolate import interp1d
from ctapipe.exceptions import OptionalDependencyMissing
from .compat import COPY_IF_NEEDED
__all__ = [
"AtmosphereDensityProfile",
"ExponentialAtmosphereDensityProfile",
"TableAtmosphereDensityProfile",
"FiveLayerAtmosphereDensityProfile",
]
SUPPORTED_TABLE_VERSIONS = {
1,
}
GRAMMAGE_UNIT = u.g / u.cm**2
DENSITY_UNIT = u.g / u.cm**3
class SlantDepthZenithRangeWarning(UserWarning):
"""
Issued when the zenith angle of an event is beyond
the range where the slant depth computation is correct (approx. 70 deg)
"""
[docs]
class AtmosphereDensityProfile(abc.ABC):
"""
Base class for models of atmosphere density.
"""
[docs]
@abc.abstractmethod
def __call__(self, height: u.Quantity) -> u.Quantity:
"""
Returns
-------
u.Quantity["g cm-3"]
the density at height h
"""
[docs]
@abc.abstractmethod
def integral(self, height: u.Quantity) -> u.Quantity:
r"""Integral of the profile along the height axis, i.e. the *atmospheric
depth* :math:`X`.
.. math:: X(h) = \int_{h}^{\infty} \rho(h') dh'
Returns
-------
u.Quantity["g/cm2"]:
Integral of the density from height h to infinity
"""
[docs]
@abc.abstractmethod
def height_from_overburden(self, overburden: u.Quantity) -> u.Quantity:
r"""Get the height a.s.l. from the mass overburden in the atmosphere.
Inverse of the integral function
Returns
-------
u.Quantity["m"]:
Height a.s.l. for given overburden
"""
[docs]
def slant_depth_from_height(
self,
height: u.Quantity,
zenith_angle=0 * u.deg,
output_units=GRAMMAGE_UNIT,
):
r"""Line-of-sight integral from height to infinity, along
the direction specified by the zenith angle. This is sometimes called
the *slant depth*. The atmosphere here is assumed to be Cartesian, the
curvature of the Earth is not taken into account. This approximation breaks down
for large zenith angles (>70 deg), in which case this function
does not give correct results. Inverse of height_from_slant_depth function.
.. math:: X(h, \Psi) = \int_{h}^{\infty} \rho(h') dh' / \cos{\Psi}
Parameters
----------
height: u.Quantity["length"]
height a.s.l. at which to start integral
zenith_angle: u.Quantity["angle"]
zenith angle of observation
output_units: u.Unit
unit to output (must be convertible to g/cm2)
"""
if np.any(zenith_angle > 70 * u.deg):
warnings.warn(
"Zenith angle too high for accurate slant depth",
SlantDepthZenithRangeWarning,
)
return (self.integral(height) / np.cos(zenith_angle)).to(output_units)
[docs]
def height_from_slant_depth(
self,
slant_depth: u.Quantity,
zenith_angle=0 * u.deg,
output_units=u.m,
):
r"""Calculates height a.s.l. in the atmosphere from traversed slant depth
taking into account the shower zenith angle.
Parameters
----------
slant_depth: u.Quantity["grammage"]
line-of-site distance from observer to point
zenith_angle: u.Quantity["angle"]
zenith angle of observation
output_units: u.Unit
unit to output (must be convertible to m)
"""
if np.any(zenith_angle > 70 * u.deg):
warnings.warn(
"Zenith angle too high for accurate slant depth",
SlantDepthZenithRangeWarning,
)
return (self.height_from_overburden(slant_depth * np.cos(zenith_angle))).to(
output_units
)
[docs]
def peek(self):
"""
Draw quick plot of profile
"""
# pylint: disable=import-outside-toplevel
try:
import matplotlib.pyplot as plt
except ModuleNotFoundError:
raise OptionalDependencyMissing("matplotlib") from None
fig, axis = plt.subplots(1, 3, constrained_layout=True, figsize=(10, 3))
fig.suptitle(self.__class__.__name__)
height = np.linspace(1, 100, 500) * u.km
density = self(height)
axis[0].set_xscale("linear")
axis[0].set_yscale("log")
axis[0].plot(height, density)
axis[0].set_xlabel(f"Height / {height.unit.to_string('latex')}")
axis[0].set_ylabel(f"Density / {density.unit.to_string('latex')}")
axis[0].grid(True)
heights = np.linspace(1, 100, 500) * u.km
for zenith_angle in [0, 40, 50, 70] * u.deg:
column_density = self.slant_depth_from_height(heights, zenith_angle)
axis[1].plot(heights, column_density, label=f"$\\Psi$={zenith_angle}")
axis[1].legend(loc="best")
axis[1].set_xlabel(f"Distance / {heights.unit.to_string('latex')}")
axis[1].set_ylabel(f"Column Density / {column_density.unit.to_string('latex')}")
axis[1].set_yscale("log")
axis[1].grid(True)
zenith_angle = np.linspace(0, 70, 20) * u.deg
for height in [0, 5, 10, 20] * u.km:
column_density = self.slant_depth_from_height(height, zenith_angle)
axis[2].plot(zenith_angle, column_density, label=f"Height={height}")
axis[2].legend(loc="best")
axis[2].set_xlabel(
f"Zenith Angle $\\Psi$ / {zenith_angle.unit.to_string('latex')}"
)
axis[2].set_ylabel(f"Column Density / {column_density.unit.to_string('latex')}")
axis[2].set_yscale("log")
axis[2].grid(True)
plt.show()
return fig, axis
[docs]
@classmethod
def from_table(cls, table: Table):
"""return a subclass of AtmosphereDensityProfile from a serialized
table"""
table = QTable(table, copy=False)
if "TAB_TYPE" not in table.meta:
raise ValueError("expected a TAB_TYPE metadata field")
version = table.meta.get("TAB_VER", "")
if version not in SUPPORTED_TABLE_VERSIONS:
raise ValueError(f"Table version not supported: '{version}'")
tabtype = table.meta.get("TAB_TYPE")
if tabtype == "ctapipe.atmosphere.TableAtmosphereDensityProfile":
return TableAtmosphereDensityProfile(table)
if tabtype == "ctapipe.atmosphere.FiveLayerAtmosphereDensityProfile":
return FiveLayerAtmosphereDensityProfile(table)
raise TypeError(f"Unknown AtmosphereDensityProfile type: '{tabtype}'")
[docs]
@dataclass
class ExponentialAtmosphereDensityProfile(AtmosphereDensityProfile):
"""
A simple functional density profile modeled as an exponential.
The is defined following the form:
.. math:: \\rho(h) = \\rho_0 e^{-h/h_0}
.. code-block:: python
from ctapipe.atmosphere import ExponentialAtmosphereDensityProfile
density_profile = ExponentialAtmosphereDensityProfile()
density_profile.peek()
Attributes
----------
scale_height: u.Quantity["m"]
scale height (h0)
scale_density: u.Quantity["g cm-3"]
scale density (rho0)
"""
scale_height: u.Quantity = 8 * u.km
scale_density: u.Quantity = 0.00125 * u.g / u.cm**3
[docs]
@u.quantity_input(height=u.m)
def __call__(self, height) -> u.Quantity:
return np.where(
height >= 0 * u.m,
self.scale_density * np.exp(-height / self.scale_height),
np.nan,
)
[docs]
@u.quantity_input(height=u.m)
def integral(
self,
height,
) -> u.Quantity:
return np.where(
height >= 0 * u.m,
self.scale_density
* self.scale_height
* np.exp(-height / self.scale_height),
np.nan,
)
[docs]
@u.quantity_input(overburden=u.g / u.cm**2)
def height_from_overburden(self, overburden) -> u.Quantity:
return np.where(
overburden <= self.scale_height * self.scale_density,
-self.scale_height
* np.log(overburden / (self.scale_height * self.scale_density)),
np.nan,
)
[docs]
class TableAtmosphereDensityProfile(AtmosphereDensityProfile):
"""Tabular profile from a table that has both the density and it's integral
pre-computed. The table is interpolated to return the density and its integral.
.. code-block:: python
from astropy.table import Table
from astropy import units as u
from ctapipe.atmosphere import TableAtmosphereDensityProfile
table = Table(
dict(
height=[1,10,20] * u.km,
density=[0.00099,0.00042, 0.00009] * u.g / u.cm**3
column_density=[1044.0, 284.0, 57.0] * u.g / u.cm**2
)
)
profile = TableAtmosphereDensityProfile(table=table)
print(profile(10 * u.km))
Attributes
----------
table: Table
Points that define the model
See Also
--------
ctapipe.io.eventsource.EventSource.atmosphere_density_profile:
load a TableAtmosphereDensityProfile from a supported EventSource
"""
def __init__(self, table: Table):
"""
Parameters
----------
table : Table
Table with columns `height`, `density`, and `column_density`
"""
for col in ["height", "density", "column_density"]:
if col not in table.colnames:
raise ValueError(f"Missing expected column: {col} in table")
valid = (
(table["height"] >= 0)
& (table["density"] > 0)
& (table["column_density"] > 0)
)
self.table = QTable(table[valid], copy=False)
# interpolation is done in log-y to minimize spline wobble
log_density = np.log10(self.table["density"].to_value(DENSITY_UNIT))
log_column_density = np.log10(
self.table["column_density"].to_value(GRAMMAGE_UNIT)
)
height_km = self.table["height"].to_value(u.km)
interp_kwargs = dict(
kind="cubic",
bounds_error=False,
)
self._density_interp = interp1d(
height_km, log_density, fill_value=(np.nan, -np.inf), **interp_kwargs
)
self._col_density_interp = interp1d(
height_km, log_column_density, fill_value=(np.nan, -np.inf), **interp_kwargs
)
self._height_interp = interp1d(
log_column_density, height_km, fill_value=(np.inf, np.nan), **interp_kwargs
)
# ensure it can be read back
self.table.meta["TAB_TYPE"] = "ctapipe.atmosphere.TableAtmosphereDensityProfile"
self.table.meta["TAB_VER"] = 1
[docs]
@u.quantity_input(height=u.m)
def __call__(self, height) -> u.Quantity:
log_density = self._density_interp(height.to_value(u.km))
return u.Quantity(10**log_density, DENSITY_UNIT, copy=COPY_IF_NEEDED)
[docs]
@u.quantity_input(height=u.m)
def integral(self, height) -> u.Quantity:
log_col_density = self._col_density_interp(height.to_value(u.km))
return u.Quantity(10**log_col_density, GRAMMAGE_UNIT, copy=COPY_IF_NEEDED)
[docs]
@u.quantity_input(overburden=u.g / (u.cm * u.cm))
def height_from_overburden(self, overburden) -> u.Quantity:
log_overburden = np.log10(overburden.to_value(GRAMMAGE_UNIT))
return u.Quantity(
self._height_interp(log_overburden), u.km, copy=COPY_IF_NEEDED
)
def __repr__(self):
return (
f"{self.__class__.__name__}(meta={self.table.meta}, rows={len(self.table)})"
)
# Here we define some utility functions needed to build the piece-wise 5-layer
# model.
# pylint: disable=invalid-name,unused-argument
def _exponential(h, a, b, c):
"""exponential atmosphere"""
return a + b * np.exp(-h / c)
def _inv_exponential(T, a, b, c):
"inverse function for exponential atmosphere"
return -c * np.log((T - a) / b)
def _d_exponential(h, a, b, c):
"""derivative of exponential atmosphere"""
return -b / c * np.exp(-h / c)
def _linear(h, a, b, c):
"""linear atmosphere"""
return np.where(h < a * c / b, a - b * h / c, 0)
def _inv_linear(T, a, b, c):
"inverse function for linear atmosphere"
return np.where(T > 0, -c / b * (T - a), np.inf)
def _d_linear(h, a, b, c):
"""derivative of linear atmosphere"""
return -b / c
def _nan_func(x, unit):
return np.nan * unit
[docs]
class FiveLayerAtmosphereDensityProfile(AtmosphereDensityProfile):
r"""
CORSIKA 5-layer atmosphere model
Layers 1-4 are modeled with:
.. math:: T(h) = a_i + b_i \exp{-h/c_i}
Layer 5 is modeled with:
.. math:: T(h) = a_5 - b_5 \frac{h}{c_5}
References
----------
[corsika-user] D. Heck and T. Pierog, "Extensive Air Shower Simulation with CORSIKA:
A User’s Guide", 2021, Appendix F
"""
def __init__(self, table: Table):
self.table = QTable(table, copy=False)
param_a = self.table["a"].to(GRAMMAGE_UNIT)
param_b = self.table["b"].to(GRAMMAGE_UNIT)
param_c = self.table["c"].to(u.km)
# build list of column density functions and their derivatives:
self._funcs = [
partial(f, a=param_a[i], b=param_b[i], c=param_c[i])
for i, f in enumerate([_exponential] * 4 + [_linear])
]
self._funcs.insert(0, partial(_nan_func, unit=GRAMMAGE_UNIT))
self._inv_funcs = [
partial(f, a=param_a[4 - i], b=param_b[4 - i], c=param_c[4 - i])
for i, f in enumerate([_inv_linear] + 4 * [_inv_exponential])
]
self._inv_funcs.append(partial(_nan_func, unit=u.m))
self._d_funcs = [
partial(f, a=param_a[i], b=param_b[i], c=param_c[i])
for i, f in enumerate([_d_exponential] * 4 + [_d_linear])
]
self._d_funcs.insert(0, partial(_nan_func, unit=DENSITY_UNIT))
[docs]
@classmethod
def from_array(cls, array: np.ndarray, metadata: dict = None):
"""construct from a 5x5 array as provided by eventio"""
if metadata is None:
metadata = {}
if array.shape != (5, 5):
raise ValueError("expected ndarray with shape (5,5)")
table = QTable(
array,
names=["height", "a", "b", "c", "1/c"],
units=["cm", "g/cm2", "g/cm2", "cm", "cm-1"],
meta=metadata,
)
table.meta.update(
dict(
TAB_VER=1,
TAB_TYPE="ctapipe.atmosphere.FiveLayerAtmosphereDensityProfile",
)
)
return cls(table)
[docs]
@u.quantity_input(height=u.m)
def __call__(self, height) -> u.Quantity:
which_func = np.digitize(height, self.table["height"])
condlist = [which_func == i for i in range(6)]
return u.Quantity(
-1
* np.piecewise(
height,
condlist=condlist,
funclist=self._d_funcs,
)
).to(DENSITY_UNIT)
[docs]
@u.quantity_input(height=u.m)
def integral(self, height) -> u.Quantity:
which_func = np.digitize(height, self.table["height"])
condlist = [which_func == i for i in range(6)]
return u.Quantity(
np.piecewise(
x=height,
condlist=condlist,
funclist=self._funcs,
)
).to(GRAMMAGE_UNIT)
[docs]
@u.quantity_input(overburden=u.g / (u.cm * u.cm))
def height_from_overburden(self, overburden) -> u.Quantity:
overburdens_at_heights = np.flip(self.integral(self.table["height"].to(u.km)))
which_func = np.digitize(overburden, overburdens_at_heights)
condlist = [which_func == i for i in range(6)]
return u.Quantity(
np.piecewise(
x=overburden,
condlist=condlist,
funclist=self._inv_funcs,
)
).to(u.km)
def __repr__(self):
return (
f"{self.__class__.__name__}(meta={self.table.meta}, rows={len(self.table)})"
)