QualityQuery#
- class ctapipe.core.QualityQuery(**kwargs: Any)[source]#
 Bases:
ComponentManages a set of user-configurable (at runtime or in a config file) selection criteria that operate on the same type of input. Each time it is called, it returns a boolean array of whether or not each criterion passed. It also keeps track of the total number of times each criterium is passed, as well as a cumulative product of criterium (i.e. the criteria applied in-order)
Attributes Summary
list of tuples of ('<description', 'expression string') to accept (select) a given data value.
Methods Summary
__call__(**kwargs)Test that value passes all cuts
get_table_mask(table)Get a boolean mask for the entries that pass the quality checks.
to_table([functions])Return a tabular view of the latest quality summary
Attributes Documentation
- quality_criteria#
 list of tuples of (‘<description’, ‘expression string’) to accept (select) a given data value. E.g.
[('mycut', 'x > 3'),]. You may usenumpyasnpandastropy.unitsasu, but no other modules.
Methods Documentation
- __call__(**kwargs) ndarray[source]#
 Test that value passes all cuts
- Parameters:
 - **kwargs:
 Are passed as locals to evaluate the given expression
- Returns:
 - np.ndarray:
 array of booleans with results of each selection criterion in order
- get_table_mask(table)[source]#
 Get a boolean mask for the entries that pass the quality checks.
- Parameters:
 - table
Table Table with columns matching the expressions used in the
QualityQuery.quality_criteria.
- table
 - Returns:
 - masknp.ndarray[bool]
 Boolean mask of valid entries.
- to_table(functions=False)[source]#
 Return a tabular view of the latest quality summary
The columns are - criteria: name of each criterion - counts: counts of each criterion independently - cum_counts: counts of cumulative application of each criterion in order
- Parameters:
 - functions: bool:
 include the function string as a column
- Returns:
 - astropy.table.Table