Getting Started with ctapipe#

This hands-on was presented at the Paris CTAO Consoritum meeting (K. Kosack)

Part 1: load and loop over data#

16 import glob
17
18 import numpy as np
19 import pandas as pd
20 from ipywidgets import interact
21 from matplotlib import pyplot as plt
22
23 from ctapipe import utils
24 from ctapipe.calib import CameraCalibrator
25 from ctapipe.image import hillas_parameters, tailcuts_clean
26 from ctapipe.io import EventSource, HDF5TableWriter
27 from ctapipe.visualization import CameraDisplay
28
29 # %matplotlib inline
32 path = utils.get_dataset_path("gamma_prod5.simtel.zst")
0 4009 0.07287972420454025 TeV
1 5101 1.7454713582992554 TeV
2 5103 1.7454713582992554 TeV
3 5104 1.7454713582992554 TeV
4 5105 1.7454713582992554 TeV
41 event
ctapipe.containers.ArrayEventContainer:
                       index.*: event indexing information with default None
                          r0.*: Raw Data with default None
                          r1.*: R1 Calibrated Data with default None
                         dl0.*: DL0 Data Volume Reduced Data with default None
                         dl1.*: DL1 Calibrated image with default None
                         dl2.*: DL2 reconstruction info with default None
                  simulation.*: Simulated Event Information with default None
                                with type <class
                                'ctapipe.containers.SimulatedEventContainer'>
                     trigger.*: central trigger information with default None
                         count: number of events processed with default 0
                  monitoring.*: container for event-wise monitoring data (MON)
                                with default None
                        muon.*: Container for muon analysis results with default
                                None
ctapipe.containers.R1Container:
                        tel[*]: map of tel_id to R1CameraContainer with default
                                None
47 for event in EventSource(path, max_events=5):
48     print(event.count, event.r1.tel.keys())
0 dict_keys([9, 14, 104])
1 dict_keys([26, 27, 29, 47, 53, 59, 69, 73, 121, 122, 124, 148, 162, 166])
2 dict_keys([82, 92, 175, 179])
3 dict_keys([17, 26, 27, 29, 43, 47, 53, 57, 69, 112, 121, 122, 124, 125, 128, 140, 144, 148, 162, 166])
4 dict_keys([3, 4, 8, 9, 14, 15, 23, 24, 25, 29, 32, 36, 42, 46, 52, 56, 103, 104, 109, 110, 118, 119, 120, 126, 127, 129, 130, 137, 139, 143, 161])
ctapipe.containers.R0CameraContainer:
                      waveform: numpy array containing ADC samples: (n_channels,
                                n_pixels, n_samples) with default None
array([[[432, 413, 395, ..., 382, 387, 382],
        [419, 420, 428, ..., 392, 396, 405],
        [381, 392, 413, ..., 375, 387, 387],
        ...,
        [391, 384, 385, ..., 379, 395, 404],
        [370, 376, 388, ..., 391, 383, 383],
        [393, 411, 413, ..., 406, 392, 396]],

       [[413, 396, 398, ..., 397, 401, 395],
        [392, 407, 403, ..., 403, 388, 399],
        [405, 403, 393, ..., 393, 400, 409],
        ...,
        [399, 406, 407, ..., 391, 405, 397],
        [401, 399, 396, ..., 395, 400, 388],
        [399, 393, 403, ..., 395, 407, 401]]],
      shape=(2, 1855, 40), dtype=uint16)
(2, 1855, 40)

note that this is (\(N_{channels}\), \(N_{pixels}\), \(N_{samples}\))

ctapipe handson
<matplotlib.collections.QuadMesh object at 0x79f092887190>
71 brightest_pixel = np.argmax(r0tel.waveform[0].sum(axis=1))
72 print(f"pixel {brightest_pixel} has sum {r0tel.waveform[0,1535].sum()}")
pixel 1831 has sum 15824
75 plt.plot(r0tel.waveform[0, brightest_pixel], label="channel 0 (high-gain)")
76 plt.plot(r0tel.waveform[1, brightest_pixel], label="channel 1 (low-gain)")
77 plt.legend()
ctapipe handson
<matplotlib.legend.Legend object at 0x79f094b006a0>
81 @interact
82 def view_waveform(chan=0, pix_id=brightest_pixel):
83     plt.plot(r0tel.waveform[chan, pix_id])
ctapipe handson
interactive(children=(IntSlider(value=0, description='chan', max=1), IntSlider(value=1831, description='pix_id', max=5493, min=-1831), Output()), _dom_classes=('widget-interact',))

try making this compare 2 waveforms

Part 2: Explore the instrument description#

This is all well and good, but we don’t really know what camera or telescope this is… how do we get instrumental description info?

Currently this is returned inside the event (it will soon change to be separate in next version or so)

SubarrayDescription(name='MonteCarloArray', n_tels=180)
MonteCarloArray
<ctapipe.visualization.mpl_array.ArrayDisplay object at 0x79f091b47340>
Table length=180
tel_idnametypepos_xpos_ypos_zcamera_nameoptics_namecamera_indexoptics_indextel_description
mmm
uint16str5str3float32float32float32str9str5int64int64str17
1LSTLST-20.643-64.81734.3LSTCamLST21LST_LST_LSTCam
2LSTLST79.993996-0.76829.4LSTCamLST21LST_LST_LSTCam
3LSTLST-19.39665.231.0LSTCamLST21LST_LST_LSTCam
4LSTLST-120.0331.15133.1LSTCamLST21LST_LST_LSTCam
5MSTMST-0.017-0.00124.35FlashCamMST12MST_MST_FlashCam
6MSTMST-1.468-151.22131.0FlashCamMST12MST_MST_FlashCam
7MSTMST-3.1379998-325.24539.0FlashCamMST12MST_MST_FlashCam
8MSTMST1.4339999151.2225.0FlashCamMST12MST_MST_FlashCam
9MSTMST3.1039999325.24323.5FlashCamMST12MST_MST_FlashCam
.................................
172ASTRISST260.0-920.065.0CHECASTRI00SST_ASTRI_CHEC
173ASTRISST-500.0815.015.0CHECASTRI00SST_ASTRI_CHEC
174ASTRISST-500.0-815.075.0CHECASTRI00SST_ASTRI_CHEC
175ASTRISST500.0815.045.0CHECASTRI00SST_ASTRI_CHEC
176ASTRISST500.0-815.053.0CHECASTRI00SST_ASTRI_CHEC
177ASTRISST-810.0655.012.0CHECASTRI00SST_ASTRI_CHEC
178ASTRISST-810.0-655.068.0CHECASTRI00SST_ASTRI_CHEC
179ASTRISST810.0655.020.0CHECASTRI00SST_ASTRI_CHEC
180ASTRISST810.0-655.041.0CHECASTRI00SST_ASTRI_CHEC


114 subarray.tel[2]
TelescopeDescription(type='LST', optics_name='LST', camera_name='LSTCam')
117 subarray.tel[2].camera
CameraDescription(name=LSTCam, geometry=LSTCam, readout=LSTCam)
120 subarray.tel[2].optics
OpticsDescription(name=LST, size_type=LST, reflector_shape=PARABOLIC, equivalent_focal_length=28.00 m, effective_focal_length=29.31 m, n_mirrors=1, mirror_area=386.73 m2)
123 tel = subarray.tel[2]
CameraDescription(name=LSTCam, geometry=LSTCam, readout=LSTCam)
OpticsDescription(name=LST, size_type=LST, reflector_shape=PARABOLIC, equivalent_focal_length=28.00 m, effective_focal_length=29.31 m, n_mirrors=1, mirror_area=386.73 m2)
<Quantity [ 0.        , -0.0377967 , -0.04724547, ...,  0.67088033,
           -0.45356484, -0.50081024] m>
Table length=1855
pix_idpix_xpix_ypix_area
mmm2
int64float64float64float64
00.00.00.002079326892271638
1-0.037796701200384926-0.0327324290367683250.002079326892271638
2-0.047245474963293450.016366662083976240.002079326892271638
3-0.0094487737629085230.0490990911207445650.002079326892271638
40.0377967012003849260.0327324290367683250.002079326892271638
50.04724547496329345-0.016366662083976240.002079326892271638
60.009448773762908523-0.0490990911207445650.002079326892271638
7-0.07559330728842001-0.06546483976983580.002079326892271638
8-0.08504208105132853-0.0163657486490912420.002079326892271638
............
1846-0.67088033276595160.96561882545319930.002079326892271638
18470.453564836008831741.08017546211512050.002079326892271638
18480.500810244496671.0638087511987850.002079326892271638
18491.16224173440920890.147289060475023960.002079326892271638
18501.17169050746812880.098189973012446710.002079326892271638
18510.708676884320607-0.93288632847675060.002079326892271638
18520.6708803327659516-0.96561882545319930.002079326892271638
1853-0.45356483600883174-1.08017546211512050.002079326892271638
1854-0.50081024449667-1.0638087511987850.002079326892271638


<Quantity 386.73324585 m2>
LSTCam
145 disp = CameraDisplay(tel.camera.geometry)
146 disp.image = r0tel.waveform[
147     0, :, 10
148 ]  # display channel 0, sample 0 (try others like 10)
LSTCam

** aside: ** show demo using a CameraDisplay in interactive mode in ipython rather than notebook

Part 3: Apply some calibration and trace integration#

166 for event in EventSource(path, max_events=5):
167     calib(event)  # fills in r1, dl0, and dl1
168     print(event.dl1.tel.keys())
dict_keys([9, 14, 104])
dict_keys([26, 27, 29, 47, 53, 59, 69, 73, 121, 122, 124, 148, 162, 166])
dict_keys([82, 92, 175, 179])
dict_keys([17, 26, 27, 29, 43, 47, 53, 57, 69, 112, 121, 122, 124, 125, 128, 140, 144, 148, 162, 166])
dict_keys([3, 4, 8, 9, 14, 15, 23, 24, 25, 29, 32, 36, 42, 46, 52, 56, 103, 104, 109, 110, 118, 119, 120, 126, 127, 129, 130, 137, 139, 143, 161])
ctapipe.containers.DL1CameraContainer:
                         image: Numpy array of camera image, after waveform
                                extraction.Shape: (n_pixel) if n_channels is 1
                                or data is gain selectedelse: (n_channels,
                                n_pixel) with default None
                     peak_time: Numpy array containing position of the peak of
                                the pulse as determined by the extractor.Shape:
                                (n_pixel) if n_channels is 1 or data is gain
                                selectedelse: (n_channels, n_pixel) with default
                                None
                    image_mask: Boolean numpy array where True means the pixel
                                has passed cleaning. Shape: (n_pixel, ) with
                                default None as a 1-D array with dtype bool
                      is_valid: True if image extraction succeeded, False if
                                failed or in the case of TwoPass methods, that
                                the first pass only was returned. with default
                                False
                    parameters: Image parameters with default None with type
                                <class
                                'ctapipe.containers.ImageParametersContainer'>
177 dl1tel.image.shape  # note this will be gain-selected in next version, so will be just 1D array of 1855
(1855,)
array([27.381046, 17.746258, 18.80205 , ..., 11.64868 , 31.961287,
       29.717525], shape=(1855,), dtype=float32)
LSTCam
<ctapipe.visualization.mpl_camera.CameraDisplay object at 0x79f097085930>
LSTCam
<ctapipe.visualization.mpl_camera.CameraDisplay object at 0x79f094b58d00>

Now for Hillas Parameters

194 image = dl1tel.image
195 mask = tailcuts_clean(tel.camera.geometry, image, picture_thresh=10, boundary_thresh=5)
196 mask
array([False, False, False, ..., False, False, False], shape=(1855,))
LSTCam
<ctapipe.visualization.mpl_camera.CameraDisplay object at 0x79f091770910>
202 cleaned = image.copy()
203 cleaned[~mask] = 0
LSTCam
(-1.0, 0.0)
{'intensity': np.float64(32.78351974487305),
 'kurtosis': np.float64(1.2333006676347782),
 'length': <Quantity 0.02219065 m>,
 'length_uncertainty': <Quantity 0.00093599 m>,
 'phi': <Angle -0.88747705 rad>,
 'psi': <Angle -1.56935711 rad>,
 'psi_uncertainty': <Angle 2.08329213 rad>,
 'r': <Quantity 1.11337613 m>,
 'skewness': np.float64(-0.271615381552047),
 'transverse_cog_uncertainty': <Quantity 0.00796404 m>,
 'width': <Quantity 0.01614423 m>,
 'width_uncertainty': <Quantity 0.00226475 m>,
 'x': <Quantity 0.70295289 m>,
 'y': <Quantity -0.86340237 m>}
LSTCam
Ignoring fixed x limits to fulfill fixed data aspect with adjustable data limits.

Part 4: Let’s put it all together:#

  • loop over events, selecting only telescopes of the same type (e.g. LST:LSTCam)

  • for each event, apply calibration/trace integration

  • calculate Hillas parameters

  • write out all hillas parameters to a file that can be loaded with Pandas

first let’s select only those telescopes with LST:LSTCam

(TelescopeDescription(type='SST', optics_name='ASTRI', camera_name='CHEC'), TelescopeDescription(type='LST', optics_name='LST', camera_name='LSTCam'), TelescopeDescription(type='MST', optics_name='MST', camera_name='NectarCam'), TelescopeDescription(type='MST', optics_name='MST', camera_name='FlashCam'))
245 subarray.get_tel_ids_for_type("LST_LST_LSTCam")
(1, 2, 3, 4)

Now let’s write out program

252 data = utils.get_dataset_path("gamma_prod5.simtel.zst")
253 source = EventSource(data)  # remove the max_events limit to get more stats
267 with HDF5TableWriter(filename="hillas.h5", group_name="dl1", overwrite=True) as writer:
268     source = EventSource(data, allowed_tels=[1, 2, 3, 4], max_events=10)
269     for event in source:
270         calib(event)
271
272         for tel_id, tel_data in event.dl1.tel.items():
273             tel = source.subarray.tel[tel_id]
274             mask = tailcuts_clean(tel.camera.geometry, tel_data.image)
275             params = hillas_parameters(tel.camera.geometry[mask], tel_data.image[mask])
276             writer.write("hillas", params)

We can now load in the file we created and plot it#

283 glob.glob("*.h5")
['hillas.h5']
287 hillas = pd.read_hdf("hillas.h5", key="/dl1/hillas")
288 hillas
intensity skewness kurtosis x y r phi length length_uncertainty width width_uncertainty psi psi_uncertainty transverse_cog_uncertainty
0 47.098688 -0.530399 1.881643 0.695206 -0.847657 1.096282 -50.643096 0.032743 0.002240 0.026627 0.002372 -51.309393 138.997232 0.006644
1 126.314263 0.020218 1.742869 0.464446 -0.999899 1.102500 -65.085472 0.055256 0.002119 0.025090 0.001144 -67.386572 7.356117 0.004057


291 _ = hillas.hist(figsize=(8, 8))
intensity, skewness, kurtosis, x, y, r, phi, length, length_uncertainty, width, width_uncertainty, psi, psi_uncertainty, transverse_cog_uncertainty

If you do this yourself, chose a larger file to loop over more events to get better statistics

Total running time of the script: (0 minutes 8.326 seconds)

Gallery generated by Sphinx-Gallery